APES Ch. 3 Notes: Ecosystems and How They Work

3.1 Notes

I. Matter, Energy and Life

i)

- A. matter in living and nonliving systems
 - 1) chemistry terms for review
 - a) matter—anything that *takes up space and has mass* (see "B")
 - b) **Law of Conservation of Matter (Mass)**—matter can neither be created nor destroyed; it merely changes form
 - exception: nuclear reactions
 - c) Law of Conservation of Energy (First Law of Thermodynamics) energy forms are interconvertible; matter can neither be created nor destroyed; it merely changes form
 - exception: nuclear reactions
 - d) **energy**—the ability to affect matter; the ability to do work (see "B")
 - e) **atom**—*smallest "building block of matter" which retains the properties of that matter*
 - if an atom is split (fission), it no longer retains its original properties
 - f) subatomic particles (main ones): p+, n^{o} , e^{-}
 - g) molecule-two more atoms chemically combined/bonded
 - can have *nonpolar covalent bonds*—equal sharing of e⁻ (example: N₂)
 - can have *polar covalent bonds*—charge imbalance; unequal sharing of e⁻ (example: H₂O)
 - h) formula unit—two or more ions chemically combined/bonded
 - has *ionic bonds*—electron "taken" from cations by anions
 - element—a specific type of atom
 - major elements in living things: C, H, N, O, P, S
 - j) compound—two or more different elements bonded together
 - k) organic—carbon-based; of living things
 - *natural organic*—naturally occurring carbon-based substances
 - *synthetic organic*—human-made carbon-based substances
 - 1) **inorganic**—having no C-C or C-H bonds
 - m) **solution**—*a homogeneous mixture*
 - 2) earth layers: crust, mantle, outer core, inner core
 - a) **lithosphere**—Earth's *crust and upper mantle*
 - b) hydrosphere—all water on Earth, in all forms and locations
 - oceans, ponds, rivers, humidity, polar caps, springs, aquifers, groundwater, glaciers...
 - c) **atmosphere**—layer of gases surrounding Earth

troposphere, stratosphere, mesosphere, thermosphere, ionosphere

- 3) more earth science terms to review
 - a) biosphere contains the living systems on Earth
 - b) **rock**—a combination of minerals
 - *igneous—from lava/magma* types: intrusive and extrusive
 - *sedimentary—sediment compaction and cementation* types: clastic (chunky), chemical, organic

- *metamorphic—from temperature and pressure extremes*
- c) **mineral**—hard, naturally-occurring, inorganic substances with a definite crystalline structure
- B. energy considerations
 - 1) matter and energy = components of the Universe
 - 2) matter—anything that can be weighed when gravity is present
 - 3) **energy**—the ability to affect matter
 - a) types of energy
 - *kinetic*—energy in motion
 - *potential*—energy of position
 - *chemical*—energy stored in bonds
 - *radiant, thermal, nuclear...*
 - b) energy units
 - calorie—amount of heat energy needed to raise the temp of 1 g of H₂O by 1°C.
 - *Calorie = diet calorie = 1kcal = 1000 cal*
 - c) energy laws: Laws of Thermodynamics
 - First Law = Law of Conservation of Energy
 - Second Law (Entropy)
 - ~ in any conversion, some unusable energy is lost
 - ~ entropy or disorder increases
 - ~ systems will move spontaneously toward increased entropy
 - Third Law (absolute zero)—as temperature drops to 0, entropy becomes constant
- C. energy changes in organisms and ecosystems
 - 1) organic matter has high potential energy; breakdown releases energy
 - 2) inorganic matter has low potential energy
 - 3) producers

PHOTOSYNTHESIS (requires E; low E to high E) $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

- a) **primary producer** = *green plants* = synthesize new organic materials (glucose)
- b) primary production—sustained photosynthesis
- c) gross primary production—total amount of photosynthetic activity
- d) net primary production—rate of production
- (total amount of photosynthetic activity energy consumed by plants)
- 4) consumers

c)

- a) **cell respiration**—process of breaking down organic molecules (molecules) to release energy
 - energy is released in small steps

CELL RESPIRATION (emits E; high E to low E) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

- b) oxidation—release of energy
 - "burning" = release of energy all at once
 - body heat is released (proof of efficiency less than 100%)

- 5) the fate of food organic material eaten by consumers:
 - i. *oxidized for energy (over 60%)*
 - ii. used for growth, maintenance, repair, fat storage
 - iii. passed as waste products
 - cellulose = plant fiber; roughage
 - CO₂, H₂O, other compounds
- 6) detritus feeders and decomposers—the detritivores
 - a) adaptations digestion of cellulose
 - b) breakdown of food into CO₂, H₂O, and other compounds
 - c) release of heat energy
 - d) *fermentation—cell respiration by partial breakdown of glucose into alcohol, acetic acid*
 - $C_6H_{12}O_6 \rightarrow CH_3CH_2OH + CO_2$ (unbal.)
 - *Products can also include CH*₄, *CH*₃*COOH*
 - e) anaerobic environments do not contain oxygen

3.2 Notes

II. Principles of Ecosystem Function: energy flow and biogeochemical cycles A. Energy flow in ecosystems

- 1) primary production
 - a) only ~2% of sunlight is harnessed for photosynthesis
 - b) standing crop biomass—primary producer biomass total
 - tropical rain forest = high gross & net productivity
 - *open ocean = high gross productivity, but low net productivity*
 - 2) energy flow and efficiency
 - a) review of three options for energy use:
 - growth (or maintenance, repair, storage)
 - *respiration (oxidized for energy)*
 - waste
 - b) Review of why trophic level biomass and energy drastically decrease up the pyramid (10% rule):
 - most standing biomass is not eaten by consumers (goes directly to the detritivores)
 - *most* (> 60%) *is consumed for energy*
 - some is undigested and passed as waste
 - c) energy flows in one direction— up through the biomass pyramid
 - d) sunlight must supply the initial energy in almost all ecosystems, those with photosynthetic and not chemosynthetic producers
 - 3) running on solar energy
 - a) nonpolluting
 - b) nondepletable (the sun is a star in "middle age" right now)

FIRST BASIC PRINCIPLE OF ECOSYSTEM SUSTAINABILITY: (almost all) ecosystems use sunlight as their energy source. SECOND BASIC PRINCIPLE OF ECOSYSTEM SUSTAINABILITY: ecosystems dispose of wastes and replenish nutrients by recycling all elements

- 4) major biogeochemical cycles prevent waste buildup and recycle elements
- B. biogeochemical cycles in detail
 - 1) **carbon cycle** (\uparrow = given off \downarrow = taken in)
 - a) CO_2 released by combustion of organics & fossil fuels \uparrow
 - b) CO_2 released by respiration \uparrow
 - c) CO_2 released by decomposition \uparrow
 - d) *volcano eruptions* ↑
 - e) *photosynthesis* \downarrow
 - f) CO_2 in ocean water \downarrow
 - g) $(HCO_3)^{-}$ in ocean water \downarrow
 - h) $CO_2 \downarrow$, carbon stored in rocks (CaCO₃)
 - i) $CO_2 \downarrow$, carbon in $C_6H_{12}O_6$ from photosynthesis
 - i) CARBON "SINKS"
 - largest reservoir of carbon = sedimentary rocks •
 - second largest reservoir of carbon = ocean (dissolved CO_2 and aquatic organisms)
 - k) processes in water reactions

 - $CO_2 + H_2O \rightarrow HCO_3^-$ (bicarbonate ions) + CO_3^{-2-} (carbonate ions) $Ca^{2+} + CO_3^{-2-} \rightarrow CaCO_3$ in shells/skeletons of aquatic organisms
 - $CaCO_3 \rightarrow$ buried, long period of time, pressure \rightarrow limestone

CARBON CYCLE - from Carbon Dioxide Information Analysis Center, cdiac.ornl.gov

Global Carbon Cycle (1992-1997)

- 2) **nitrogen cycle** (\uparrow = given off \downarrow = taken in)
 - a) **nitrogen fixation** *changing gaseous nitrogen* (N₂) *into a usable form for plants*
 - i) nitrogen-fixing bacteria & cyanobacteria ↓
 - ii) *nitrogen fixation-- lightning* \downarrow
 - iii) nitrogen fixation-- industrial \downarrow (fertilizer)
 - iv) **legumes**—plants with root nodules containing nitrogenfixing bacteria
 - v) reactions \downarrow
 - $N_2 + 3H_2 \rightarrow 2NH_3$ first...
 - ...then $NH_3 + H_2O \rightarrow NH_4OH (NH_4^+ + OH^-)$
 - vi) **ammonification**—*conversion of (often organic)* N₂ *into* NH₃ *by ammonifying bacteria*
 - b) **denitrification**—changing nitrates and nitrites in the soil to gaseous nitrogen
 - i) denitrifying bacteria $\uparrow NO_3^-$ and/or $NO_2^- \rightarrow N_2$
 - ii) anaerobic bacteria convert ammonia back into N_2 or N_2O \uparrow
 - c) other processes
 - i) death; decomposers put into soil ↓ (production of NH₃, NO₃⁻, & NO₂⁻)
 - ii) fertilizer runoff into soil \downarrow
 - iii) waste products, into soil \downarrow
 - iv) assimilation
 - inorganic N₂ is converted into organic molecules such as DNA, amino acids, and proteins ↓
 - plants assimilate nitrogen through their roots \downarrow
 - herbivores assimilate organic nitrogen by eat plants \downarrow
 - v) **nitrification**—ammonia (NH₃) is converted to nitrate ions $(NO_3)^-$ (\downarrow , nitrogen compound oxidation)

NITROGEN CYCLE from www.learner.org

3) phosphorus cycle

- a) no gaseous phase involved a sedimentary cycle only (all \downarrow)
- b) *water-soluble phosphate ion; insoluble phosphate precipitates;* organic phosphate \downarrow

- c) waste products containing phosphate, $(PO_4)^{3^-} \downarrow$ to soil d) fertilizer on crops, $(PO_4)^{3^-} \downarrow$ to soil e) $(PO_4)^{3^-}$ dissolved from weathering, \downarrow into water f) $(PO_4)^{3^-}$ absorbed by plants & changed into organic phosphate \downarrow g) $(PO_4)^{3^-}$ in animal waste, \downarrow to soil
- h) discharge of sewage, \downarrow into water

PHOSPHORUS CYCLE from www.learner.org

4) sulfur cycle

- a) an atmospheric cycle only
- b) H_2S (hydrogen sulfide) and SO_2 (sulfur dioxide) released into atmosphere from natural (volcanoes) and non-natural sources \uparrow
- c) reactions
- $H_2S + O_2 \rightarrow SO_2$
- $SO_2 + O_2 \rightarrow SO_3$ (sulfur trioxide)
- $SO_2 + H_2O \rightarrow H_2SO_4$ (sulfuric acid)
- d) acid deposition, sulfur returned to water and soil \uparrow
- e) sulfur compounds taken up by plants and animals
- f) combustion of S-containing coal \uparrow

SULFUR CYCLE – from NYU

3.3 Notes III.

- Implications for Humans
 - A. sustainability
 - 1) significance of energy flow
 - In general, it takes 10 pounds of grain to produce 1 pound of meat (more for beef, less for chicken)
 - 2) another energy source
 - a) fossil fuels: coal, petroleum oil, natural gas
 - nonrenewable resources

- pollution from combustion (smog, acid precipitation)
- b) *solar energy*
- c) hydroelectric energy
- d) geothermal energy
- e) wind energy
- f) nuclear energy
- 3) sustainability and nutrient cycling
 - i. **natural system =** *recycling of elements*
 - ii. human system = one-directional flow of elements
 - landfills
 - pollutants in stormwater and groundwater
 - "disposable society"
- B. value
 - 1) **natural capital**—*natural resources*
 - 2) ecosystems—provide goods and services
 - 3) natural ecosystems are undervalued because some functions they perform are not obvious
 - 4) incremental value—how changes in goods or services affect humans

 Adapted from R. Costanza <i>et al.</i>, "The Value of the World's Ecosystem Services and Natural Capital," <i>Nature</i> Vol. 387 (1997). Annual global value of Ecosystems Services = values in trillion \$ U.S. 		
• • • •	17.1 Soil formation3.0 Recreation2.3 Nutrient cycling2.3 Water regulation and supply1.8 Climate regulation1.4 Habitat	 0.8 Food and raw materials production 0.8 Genetic resources 0.7 Atmospheric gas balance 0.4 Pollination 1.6 other
•	1.1 Flood and storm protection	

TOTAL = \$ 33,000,000,000,000

- C. managing ecosystems Ecological Society of America <u>www.esa.org</u> primary goal = to ensure sustainability
 - set clear goals
 - have valid models for clarification
 - be aware of interconnectedness
 - be aware of the dynamic changing nature of ecosystems
 - consider the context
 - have adaptability and accountability
 - consider humans as part of nature